
# ADVANCING RE-CENTRING ECCENTRICALLY BRACED FRAMES: NEW LINK TYPOLOGIES AND INFLUENCE OF REINFORCED CONCRETE SLAB (ARNIS)

## Goal of the project

To reduce the costs and downtime of a structure hit by an earthquake, removable links and re-centering capacity concepts may be implemented in a dual eccentrically braced structure. The project aims at extending the validation of re-centering capability and link replacement feasibility on extended end-plate typologies and also investigate more detailed the global and local influence of three-dimensional reinforced concrete slab panels, as well as reinforced concrete slab repair.

### Short description of the project

It studies the re-centering capability using new link typologies and the concrete slab influence.

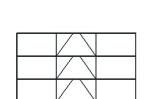


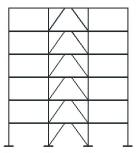
### Project implemented by

Politehnica University Timişoara (UPT) — Civil Engineering Faculty — Steel Structures and Structural Mechanics Department

#### Implementation period

10.10.2018 - 09.10.2020


### Main activities


- Designing prototype structures with two height levels: medium rise (P+2E) and higher rise (P+5E), with differently connected links (flush/extended end-plate), extending the bolted links removal procedure and re-centering capability — done in 2018;

- Experimentally testing isolated links assemblies in two solutions: flush end-plate bolted link and extended end-plate bolted link, at natural scale (1:1), both of them with and without concrete slab above the link (8 tests) proposed for 2019;
- Experimentally testing a 3D portal frame, with/without concrete, with damaged/repaired slab (4 tests) proposed for 2020;
- Calibrating numerical models post-test proposed for 2019 and 2020:
- Seismic performance and behavior factors numerical assessment
- proposed for 2020.

### Results

In 2018 — prototype structures design, re-centering capability validation and link removal procedure description.





Proposed for 2019 and 2020:

- Design of experimental specimens;
- Material behavior curves;
- Links experimental results describe local behavior;
- Frames experimental results describe global behavior;
- Calibrated numerical models for links:
- Values of behavior factors for structures.

Obtained results will be presented in project deliverables and scientific papers at international conferences/journals.

# Research Report \$

## Applicability and transferability of the results

Increase the application potential of the system both at national and international levels: by improved connections (larger behavior factor obtained), improved knowledge on the effect of reinforced concrete slab and repair of the slab.

Solutions providing self-centering of the structure are technically demanded and require specialized knowledge, careful maintenance and high initial cost. Alternatively, a conventional design can be employed, but with the dissipative members realized to be removable allowing their replacement when damaged and reducing the repair costs.

## Financed through/by

Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI)

#### Research centre

Research Centre for Mechanics of Materials and Structural Safety - CEMSIG

### Research team

Assist. Mirela Adriana CHESOAN, PhD (project manager) Assoc. prof. Aurel STRATAN, PhD

### **Contact information**

Assist. Mirela Adriana CHESOAN, PhD Faculty of Civil Engineering Department of Steel Structures and Structural Mechanics, Ioan Curea Street No.1, 300224, Timişoara

Phone: +40 (0) 256 403 925 E-mail: adriana.chesoan@upt.ro

Web: https://www.ct.upt.ro/centre/cemsig/arnis\_en.htm